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TOWARDS A CALCULUS OF BIOLOGICAL
NETWORKS

H.S. MORTVEIT AND C.M. REIDYS

ABSTRACT. In this paper we present a new framework for studying
the dynamics of biological networks. A specific class of dynami-
cal systems, Sequential Dynamical Systems (SDS), is introduced.
These systems allow one to investigate the interplay between struc-
tural properties of the network and its phase space. We will show in
detail how to find a reduced system that captures key features of a
given system. This reduction is based on a special graph-theoretic
relation between the two networks. We will study the reduction of
SDS over n-cubes in detail and we will present several examples.

1. INTRODUCTION

Biological networks, like metabolic or regulatory networks, as well as
networks in general, can be considered as undirected or directed graphs
in which the vertices have states that depend on the states of their cor-
responding adjacencies. One typically has some information about how
state transitions of the respective vertices occur, but it is extremely dif-
ficult to analyze the global dynamics of the networks as interactions
among the vertices occur. Additionally, it appears to be a generic fea-
ture of biological networks that these interactions take place sequen-
tially.

Accordingly, a mathematical framework designed for the analysis of
the dynamics of biological networks should explicitly take into account:
scheduling, the properties of the vertices as state transition functions,
and the interconnection scheme, i.e., the graph itself.

Date: June, 2001.
Key words and phrases. sequential dynamical systems, graph morphisms, phase

space embedding.
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In the following we will introduce a new class of dynamical systems
called sequential dynamical systems, or SDS for short [5, 10]. SDS are
basically comprised of i) state transition rules, i) an undirected graph
where each vertex has a state, and #7) a permutation of the vertices
in the graph giving the update order. Thus an SDS is a dynamical
system of the form ¢ : F} — F}, where F, = {0,1} is the field with

two elements.

The question of obtaining information about a network thus becomes
a question of understanding the phase space structure of the SDS ¢.
For some results on, e.g., reversibility/invertibility and fixed points we
refer to [2, 3, 5, 10, 11].

The phase space of an SDS will usually consist of more than one at-
tractor. Thus a time series will only visit certain parts of phase space.
Likewise for networks: there will typically be valid states or regimes
that are never realized under the time evolution. It seems fair to be-
lieve that constructing a “reduced” network that produces the same
dynamics as the original network in the essential regimes and “throws
away” the non-essential regimes should allow for more insight and has
an obvious computational advantage.

In the following we will show how to reduce the phase space of cer-
tain SDS ¢ over a graph Y. We will do so by considering and SDS
¢ over a smaller graph Z for which there is a covering map (locally
bijective graph morphism) p : Y — Z. In this construction the state
transition functions of corresponding Y and Z vertices are identical,
and the dynamics of the SDS v represents the essential parts of the
dynamics of ¢. In fact, there can be several covering maps p; : ¥ — Z;,
each of which gives rise to a reduced system. This may be viewd as
factorization of the SDS over Y into factors which are SDS over Z;.

Let Y be a labeled graph with vertex-set v[Y] =N, = {1,2,3,...,n},
which we write as ¥ < K,, where K, is the complete graph on n
vertices. The edge-set of Y is denoted by e[Y]. Let S;y(i) be the
set of Y-vertices that are adjacent to vertex i, let §; = |S1,y(i)| and
let d = maxen, 0;- The increasing sequence of elements of Sy y (%)
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preceded by 7 is denoted by
(1.1) By (i) = (4,41, -, Js)-

To each vertex 7 we associate a state x; € Fy, and we write z =
(x1,Z9,...,x,) for the system state. For each £k = 1,...,d+ 1 we
have a symmetric function f : ]F’2c — [y, and for each vertex i we
introduce a map

(1.2) projy[i] : B} — B, (zy,...,2,) — (i, Ty, -5 Tjs,)-

The map projects from the full n-tuple  down to the states vertex i
needs for updating its state. For each ¢ € N,, there is a Y-local map
F;y :Fy — F3 given by

Yi = f5;+1 © projy/[il,

(1.3) Fiy(z) = (21, i1, %i(2), Tiv1, - - -, Tn)-

The function F;y updates the state of vertex ¢ and leaves all other
states fixed. We refer to the sequence (F;y); as Fy. Note that for each
graph Y < K, a sequence (fy)i<k<n induces a sequence Fy, i.e., we
have a map {Y < K,} — {Fy}. We define the map [Fy, | : S, —
Map(F3, F3) by

n

(1.4) [Fy, 7] = HFw(i),Ya

i=1

where product denotes ordinary function composition.

Definition 1 (Sequential Dynamical System). Let Y < K, let (fx)«
with 1 < k < d(Y) + 1 be a sequence of symmetric functions , and
let m € S,, The sequential dynamical system (SDS) over Y induced by
(fx)x with respect to the ordering 7 is [Fy, 7.

We call an SDS homogeneous if it is induced by a sequence of local
symmetric functions of the form (fx)r = (Bk)r where B is a Boolean
function like, e.g., parity which returns the sum of its arguments mod-
ulo 2.
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1l——mmm2

4 ——3
F1GURE 1. The circle graph on 4 vertices, Circy.

Example 1. Let Y = Circy as shown in figure 1. With the parity func-
tion, i.e., pary : F§ — Ty defined by pary(z1, 29, 23) = Y., z; mod 2,
update order (1,2,3,4) and initial state (1,1,0,0) we get

Pari(1,1,0,0) = (0,1,0,0),

Par, o Par;(1,1,0,0) = (0,1,0,0),

Pars o Pary o Par;(1,1,0,0) = (0,1, 1, 0),

Par, o Parz o Pary o Par;(1,1,0,0) = (0,1, 1, 1).

and thus [Parci.,, (1,2,3,4)](1,1,0,0) = (0,1,1,1).

Since phase space for an SDS is finite we may identify it with a finite
unicyclic digraph.

Definition 2. The digraph T'[Fy, 7| associated to the SDS [Fy, 7] is
the directed graph having vertex-set Iy and directed edges {(z, [Fy, 7](z)) |
z ey}

A subgroup H < Q% will under certain conditions induce a locally
bijective map ¢ : Q5 — H \ Q5. The graph H \ Q% has vertex set
Q%/H (factor space) and two vertices 4, v are adjacent iff there are
elements v € % and v € ¥ such that {u,v} € e[Q3].

This paper is organized as follows. First we introduce the the concept
of graph coverings and locally bijective graph morphisms. Assuming
we have a graph covering ¢ : Y — Z, we show how the phase space of
an SDS over Z is embedded into the phase space of an SDS over YV
where the same local functions are used. Finally, we develop a criterion
based on local bijectivity and subgroup structure of the n-cube Q% for
the existence of covering maps of the form ¢ : Q% — Z = H \ @5,
H < Q5.
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2. FACTORIZATION
Recall that a morphism between graphs Y and Y’ is a pair ¢ = (¢1, ¢2)
with ¢1 : v[Y] — v[Y'] and ¢ : e[Y] — e[Y”] such that
Ve={i,j} €e[Y]: ¢ale)={d:(7),d1(j)}

Thus, adjacent vertices in Y are mapped to ¢) adjacent vertices in Y’
or ii) to the same vertex in Y’'. A morphism of directed graphs also
preserves the direction of edges.

A graph morphism ¢ : Y — Y is locally bijective (surjective) if
V’L € V[Y] : ¢‘Bl,Y(i) : Bl,y(’i) — Bl,yl(¢(i))

is bijective (surjective). Note that a locally bijective graph morphism
does not have to be bijective as the following example shows.

Example 2. As an example of a locally bijective graph morphism we
have ¢ : Q3 — K, see figure 2. The map ¢, is defined by ¢,({0,7}) =

‘
25 e 3

FIGURE 2. The graphs Q3 and Kj.

{1}7 (}51({1, 6}) = {2}a ¢1({27 5}) = {3}7 ¢1({3: 4}) = {4}a and ¢2 s the

induced edge-map. The resulting graph morphism is clearly bijective.
As a trivial example of locally surjective graph morphism we have 9 :

Stary — Stars, as shown in figure 3. Here ¢; is defined by ¢;(0) = 0,
¢1(1) =1, ¢1(2) =2, :(3) = 2.

Definition 3. Let [F, o] and [Fy, 7] be two SDS. An SDS-morphism
between [Fz, o] and [Fy, 7] is a pair (¢, ®) where ¢ : Y — Z is a graph
morphism and where ® : I'[Fz, 0] — I'[Fy, 7| is digraph morphism.
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FiGURE 3. The graphs Starz and Stars.

Given a graph morphism ¢ : Y — Z we want to relate the dynamics of
SDS over the two graphs Y and Z. The local functions will be the same
for the two graphs unless otherwise stated. To begin, we relate update
schedules for Y and Z via ¢. Assume |v[Y]| =n and |v[Z]| = m and
let ¢='(i) = {41,...,%,} where 77 < ...5, for 1 <4 < m. Define the
map 7 : Sm — Sp by

(2.1) mp(m = (m, o, oo, Tm)) = (11,3 Mty Tmds o5 L, )-
For instance, in the example with ¢ : Q3 — K, we have 74(4,3,2,1) =
(3,4,2,5,1,6,0,7).

Similarly, we define the map 7 : FJ* — F7 by

(2.2) (7(@))k = Zo(h)-

The dynamics of SDS over Y and Z can now be related in the following
way [12]:

Theorem 1. Let Y and Z be loop-free connected graphs, let ¢ 1Y — Z
be a locally bijective graph morphism, and let (f;); be a fized sequence
of Boolean symmetric functions. Then the map T induces a natural
embedding

(2.3) T :T[Fy, 7] = I'[Fy,ne(m)].

Example 3. To illustrate the implications of Theorem 1 we show how to
relate the phase space of [Ming,, id] to that of [Mings, (0,7, 1,6,2,5,3,4)].
From the example above we have the bijective graph morphism ¢ :

Q3 — K. Next note that n4(ids) = (0,7,1,6,2,5,3,4). From, e.g.,

[1] we know that [Ming,,ids] has exactly two 5-cycles and no fixed
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points. The two 5-cycles are shown in the top row of figure 4. For

convenience we use the map
i
. TRe _ i1
é.zIFlz _>Na gz(xlaaxl)_E ‘T]?]
j=0

to encode states (binary tuples), and we have, e.g., (1,1,0,1) — 1+2+
8 = 11. It is straightforward to see that the phase space of [Ming,, id,]
is indeed embedded in the phase space of [Mingg, (0,7,1,6,2,5,3,4)].

We remark that [Mingg, 74(id4)] has two fixed points in addition to the
two 5-cycles shown in the last row in figure 4. These fixed points are
related by the graph automorphism v = (07)(16)(25)(34), and conse-
quently, so are their transients. Stated differently, the two components
in '[Mings, ns(id4)] containing the fixed points are isomorphic. Their
structure is shown in figure 5.

In view of example 3 it is of interest to determine the locally bijective
graph morphisms ¢ : Y — Z for a given graph Y. In the particular
case of a locally bijecitve graph morphism % : )5 — K, 1 we have that
it exists if and only if a specific number theoretic condition is fulfilled.

Proposition 1. Assume 2" = 0mod n + 1, and let 1 € Sp11. Then
there erists a covering ¢ : Qy — Kny1 and the SDS [Pargs, 14(7)] has
a periodic orbit of length n + 2.

Proof. We will establish the existence of the covering map ¢ : Q5 —
K, .1 under the above condition in the next section. Since a covering
map is locally bijective, we can apply Theorem 1 to deduce that the
phase space of ® = [Pary, , 7| can be embedded into the phase space
of ¥ = [Pargy,ny(m)]. Thus we see that whatever we can deduce about
the smaller system ® applies to the larger system W. The phase space
of ¥ has 22" points while that of ® has 2"*! points.

One particular consequence of this is that every periodic orbit for ®
will also be a periodic orbit for ¥. We will show that ® always have a
periodic orbit of length n + 2. For simplicity we take 7 = id, ;1.
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FIiGURE 4. The top row shows the two five-cycles in
[Ming,,id]. The second row shows the images of the
top cycles under x,, and the last row shows the corre-
sponding periodic cycles in the digraph
['[Mings, n,(idy)]-

By inspection Par, : F — FJ is seen to satisfy the functional relation

(2.4) V(T T, V(21 T0)) = Ty



TOWARDS A CALCULUS OF BIOLOGICAL NETWORKS 9

FiIGure 5. The structure of the components in
['[Mins, n4(ids)] containing a fixed point. A single filled
circle depicts a single state, while a circled number 7 de-
picts that there are 7 direct predecessors that do not have
any successors themselves.

As a consequence of this we derive

1

x = (x1,Z9,...,2,) — (Par,(z), e, x3,...,12,)
(Parn(x), Par, (Par,(z),z2,...,25),23, ..., %n)
= (Parn(:c), TL1,T3y---, xn)
v (Par, (), 1, T2, - - ., Tn_1),

where % denotes the update of state z;.

In light of the above we obtain the commutative diagram

[Parg,, ,id]
(2.5) By —— T}
LPary, l T proj
by —— I,
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where

(2.6) proj(x1, ., Tn, Tny1) = (T1,-- -, Tn),

(2.7) tpary, (X1, -+ -, Tp) = (L1, -« -, T, Parp (21, ..., Ty)),
(2.8) Ont1(T1, %o, oo oy Tpy1) = (Tpg1, 1, -« o, Tp),

and F? = {z € F}*! | 2,1 = par, (21,...,2,)}.

Note that proj : F? — F? and ip,;, : F? — F? are inverses. Similarly we
obtain [Parg, ,id]® (z) =
[Parg,,id]¥) = projoo¥_; o tpy, showing that the order of an orbit of

(2, Par,(z),z1, 29, ..., Ty 2) and in general

[Parg, ,id] is a divisor of n + 1.

Along the same lines we can show that [Parg, , 7] and [Parg,,id] are
topologically conjugated systems. We omit the details.

Thus we have that the length of every orbit of [Parg, ., 7] is a divisor
of n + 2. However, it is easy to see that the orbit containing the state
(1,0,0,...,0) always have length n 4+ 2. To be explicit we have for

n="7
(1000000) — (1100000) — (0110000) —— (0011000)
(0000001) <— (0000011) <— (0000110) <—— (0001100) .

Thus we deduce from Theorem 1 that [Pargs,ns(7m)] has a periodic
orbit of length n 4 2, and we are done.

3. COVERING MAPS OVER THE 7n-CUBE

Proposition 1 turns out to be a special case of a more general theory
for constructing covering maps over n-cubes. The theory for n-cubes,
which may also extend to, e.g., certain Cayley graphs, is facilitated by
the fact that F; can be viewed both as a group and as a vector space.

In this section we will show how the existence of subgroups H < Fj
with certain properties can be used to obtain covering maps. In fact,
this leads to a cascade of sequences of covering maps.

The following two results constitute the core of this theory[12]:
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Lemma 1. For any subgroup H' < T} with [Fy : H'| > n+1 there
exists an isomorphic subgroup H = H' that has the property H(x) N
H(y) =@ forx #y; z,y € {0,e1,...,en}.

The following proposition shows how the subgroups of Lemma 1 induce
covering maps in a natural way:

Proposition 2. For each subgroup H < Fy with the property H(x) N
H(y) = @ for x # y; xz,y € {0,e1,...,e,} the graph H \ QF is con-
nected, undirected and loop-free and the natural projection

gy — H\ QY v H(i)

1S @ covering map.

Proof. We have to show that the mg-induced restriction mapping:

(31) I‘eSStang(@ (7TH) : StaI‘Qg (6) — StaI‘H\Qg (7TH(§))

is an isomorphism for arbitrary ¢ € ;. By construction, IeSStargy (€) ()
is surjective and H(z) N H(y) = @ for z # y; =,y € {0,e1,...,e,} is
equivalent to H(x +§)NH(y+ &) = @ for z # y; z,y € {0,e1,...,€,}
for any £ € Fy. Therefore TeSStarqg (€) (mg) is injective and the proof of
the proposition is complete.

Corollary 1. Let n be a natural number. Then we have 2" = 0
mod n + 1 if and only if there exists a subgroup G < F§ with the
property By = G(0) UJ;_, G(e:).

Proof. Suppose we have 2" = 0 mod n + 1. Since F} is a p-group
there exists a subgroup in its decomposition series H < F3 with the
property [Fy : H] = n + 1. According to Lemma 1, there exists
some set of H-representatives {¢1,...,¢,} that forms a basis of Fy.
Let f be the Fo-homomorphism defined by f(y;) =e€;, fori=1,...,n.
Clearly, G = f(H) has the property F; = G(0) U J;_, G(e;), whence
the corollary.

Corollary 2. There exists a locally bijective graph morphism

(3.2) 0198 — Koy
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if and only if 2" =0 mod n + 1 holds.

The following lemma establishes a group action of Auty(Q%) = {o €
Aut(Q%) | 0(0) = 0} on graphs H \ Q5.

Lemma 2. Let H < Fy be a subgroup and let n € Auto(Q%). Then we
have

H\Q; =nH\Qj .

3.1. Computation of covering maps. For small n we can easily
compute the various subgroups of @Q%[4]. It turns out that for fixed
n < 7 the orbits of the subgroups under Auty(Q%) (the isometric orbits)
yield non-isomorphic reduced graphs. Moreover, for n = 4 the only
covering map images of Q% are the ones that can be obtained as H\ Q5.
One may speculate if this is true in general. That is, do the isometric
orbits yield non-isomorphic covering images and can all covering images
be obtained as H \ Q% for some sub-group H.

In table 1 we have summarized the number of non-isometric orbits for
all subgroups of ()% satisfying the condition in Proposition 2 for n < 9.
In table 2 orbit representatives are given for n < 7. Some of the reduced
graphs occurring in this scheme are shown in figure 6 and 7.

FIGURE 6. The only two non-isomorphic graphs of the
form H \ Q3.

3.2. Constructing covering graphs from chain maps. In [6] a
way of constructing graph coverings of a given graph is described. We
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FIGURE 7. All non-isomorphic graphs of the form H\Q}
on 16 vertices. In each case there are two interlocked
cubes. The edges in red show how the two cubes are
connected. The other vertices of the outer cube are sim-
ilarly connected, but the edges are not shown to ease
visualization. Note that there are 4 lines in figure on
the top right x. The two lines connecting the outer cube
to the closest vertex and the most distant vertex of the

inner cube coincide.

will outline it briefly. Let ST denote the set of arcs or sides of the
graph I'. Thus each edge {u,v} gives rise to two sides, (u,v) and
(v,u). Let G be any group. A G-chain on I' is a map ¢ : ST —» @
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n | #(size 2) F(size 4) F(size 8) #(size 16)
4 2 0 0 0
) 3 1 0 0
6 4 4 1 0
7 ) 8 3 1
8 6 14 15 6
9 7 22 38 -

TABLE 1. Subgroups of the n-cube: The table gives the
number of isomorphic-non-isometric orbits of subgroups
H < @)% of the given sizes.

such that ¢(u,v) = (¢(v,u)) ! for all sides (u,v) of T. The covering
map T' = T(G, ¢) of T with respect to a given G-chain ¢ on T' is the
graph with v[['] = G x v[I'] and where vertices (g1, v;) and (gs, vo) are
joined by an edge iff (v1,v9) € ST and gy = ¢1(vy, v2). [ is clearly
well-defined.

Note that the 3-cube is isomorphic to the covering graph K4(1E"2, ¢) of
K4 where ¢ is the Fy-chain assigning 1 to each side of Kj.

Moreover we note that the graph G5 on the third row in figure 7 is
isomorphic to the covering graph Kg(]Fg, ¢), where ¢ again is the F,-
chain assigning 1 to each side of K.

Another, but quite similar, approach for constructing covering maps
uses so-called “voltage graph” [7, 8, 9]. Voltage graphs and G-chains
are strongly related.

4. SYNOPSIS

In this paper we have introduced a mathematical framework suitable for
the analysis of network dynamics. A new class of dynamical systems,
SDS, that is an abstract model for the dynamics of networks has been
discussed.

The results on SDS presented in this paper display the interplay be-
tween the structure of the underlying networks and their corresponding
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n Size 2 Size 4 Size 8 Size 16

{0,14}, {0,15}

5| {0,28},{0,30}  {0,7,25,30}
{0,31}

{0,56}, {0,60}  {0,7,25,30},  {0,7,25,30,
6| {0,62},{0,63}  {0,7,56,63} 42,45, 51,52}

{0,7,57,62}
{0, 15,51, 60}
{0,112}, {0,120}  {0,7,25,30}  {0,7,25,30,42, {0,7,25,30,42,
{0,124}, {0,126}  {0,7,56,63} 45,51, 52} 45,51, 52, 75,
{0,127} {0,7,57,62}  {0,7,25,30,97, 76,82,85,97,
{0,7,120,127} 102,120,127} 102,120,127}
7 {0,7,121,126}  {0,7,25,30, 98,

{0,15,51,60} 101,123,124}
{0,15,113,126} {0,7, 25, 30, 106,
{0,15,115,124} 109,115, 116}

{0, 15,51, 60, 85,
90,102, 105}

TABLE 2. Subgroups of the m-cube: The table gives
representatives of the isomorphic-non-isometric orbits of
subgroups H < )7 of the given sizes that satisfy the
condition in Lemma 1. Explicit computations show that
the orbits give non-isomorphic reduced graphs H \ Q% for
n<T.

dynamics. Theorem 1 allows one, for particular schedules, to obtain
key information about a given system via a reduced/simpler network.
We have shown for the special case of Boolean n-cubes how to con-
struct these reduces systems based on the subgroup structure of Fj.
Networks over n-cubes can be reduced to networks over smaller graphs
induced by symmetries of the n-cube itself.



16 H.S. MORTVEIT AND C.M. REIDYS

ACKNOWLEDGEMENTS

We thank C.L. Barrett for stimulating discussions. Special thanks and
gratitude to D. Morgeson for his continuous support. This research is
supported by Laboratory Directed Research and Development under
DOE contract W-7405-ENG-36 to the University of California for the
operation of the Los Alamos National Laboratory.

REFERENCES

[1] C. L. Barrett, H. S. Mortveit, and C. M. Reidys. Elements of a theory of
simulation II: Sequential dynamical systems. Appl. Math. and Comput., 107(2-
3):121-136, 2000.

[2] C. L. Barrett, H. S. Mortveit, and C. M. Reidys. Elements of a theory of
simulation III: Equivalence of SDS. Appl. Math. and Comput., 2000. In press
(2000).

[3] C. L. Barrett, H. S. Mortveit, and C. M. Reidys. Elements of a theory of
simulation TV: Fixed points, invertibility and equivalence. Appl. Math. and
Comput., 2000. Submitted (2000).

[4] C. L. Barrett, H. S. Mortveit, and C. M. Reidys. Elements of a theory of
simulation V: Phase space properties of sequential dynamical systems. Appl.
Math. and Comput., 2001. In progress (2001).

[5] C.L.Barrett and C. M. Reidys. Elements of a theory of simulation I: Sequential
CA over random graphs. Appl. Math. and Comput., 98:241-259, 1999.

[6] N. Biggs. Algebraic Graph Theory. Cambridge Mathematical Library, second
edition, 1993.

[7] J. L. Gross. Voltage graphs. Discrete Mathematics, 9:239-246, 1974.

[8] J. L. Gross and T. W. Tucker. Generating all graph coverings by permutation
voltage assignments. Discrete Mathematics, 18:273-283, 1977.

[9] M. Hofmeister. Isomorphisms and automorphisms of graph coverings. Discrete
Mathematics, 98:175-183, 1988.

[10] H. S. Mortveit and C. M. Reidys. Discrete, sequential dynamical systems.
Discrete Mathematics, 226:281-295, 2001.

[11] C. M. Reidys. On Acyclic Orientations and SDS. Adv. in Appl. Math., 2000.
Accepted (2000).

[12] C. M. Reidys. Phase space properties of SDS. Adv. in Appl. Math., 2001. In
progress (2001).



TOWARDS A CALCULUS OF BIOLOGICAL NETWORKS 17

Los ALAMOS NATIONAL LABORATORY, D-2, 87545 NEW MEXIico, USA, MAIL-
stop: TA-0, SM-1237, MS M997, PHONE: ** (505) 665-7285, Fax: ** (505)
665-7464

E-mail address: henning@lanl.gov

Los ALamos NATIONAL LABORATORY, TSA-2, 87545 NEw MEXico, USA,
MaiLstop: TA-0, SM-1237, MS M997, PHONE: **(505) 665-0911, Fax:
** (505) 665-7464

E-mail address: duck@tsasa.lanl.gov



